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Abstract

Complex foldings of the vaginal wall are unique to some cetaceans and artiodactyls and are

of unknown function(s). The patterns of vaginal length and cumulative vaginal fold length

were assessed in relation to body length and to each other in a phylogenetic context to

derive insights into functionality. The reproductive tracts of 59 female cetaceans (20 spe-

cies, 6 families) were dissected. Phylogenetically-controlled reduced major axis regressions

were used to establish a scaling trend for the female genitalia of cetaceans. An unparalleled

level of vaginal diversity within a mammalian order was found. Vaginal folds varied in num-

ber and size across species, and vaginal fold length was positively allometric with body

length. Vaginal length was not a significant predictor of vaginal fold length. Functional

hypotheses regarding the role of vaginal folds and the potential selection pressures that

could lead to evolution of these structures are discussed. Vaginal folds may present physical

barriers, which obscure the pathway of seawater and/or sperm travelling through the vagina.

This study contributes broad insights to the evolution of reproductive morphology and

aquatic adaptations and lays the foundation for future functional morphology analyses.

Introduction

The diversity and rapid evolution of male genitalia has been well-documented across many

taxa, while the morphological variability of female genitalia has received comparatively little

attention [1–2]. This lag in research efforts may reflect a male-biased view of the genital evolu-

tionary process, easier accessibility of intromittent organs compared to vaginas, and erroneous

assumptions regarding non-fluctuating vaginal forms [2–3]. As copulation is the most direct

interaction between males and females [4], exploration of patterns of variation in vaginal mor-

phology can provide insights into mechanisms of genital co-evolution. Sexual selection and

sexual conflict are broadly accepted as the primary mechanisms driving male genital diversity

[4–6]. In contrast, female genitalia have multiple functions in addition to copulation (e.g.,

sperm storage, oviposition, parturition) and evolve under constraints from both sexual and

natural selection [4, 7]. While the genitalia of females are typically not as diverse as males,
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advances in analytical tools (e.g., scanning electron microscopy, transmission electron micros-

copy) have revealed extensive morphological variation in female genitalia within and across

species [3, 8–9].

Female whales, dolphins, and porpoises (cetaceans) possess unusual folds of tissue in their

vaginas, which are of unknown function(s) [10–11]. Vaginal folds are transverse protrusions

of the vaginal wall into the vaginal lumen, with the distal tips often oriented caudally [12].

There is a broad diversity in vaginal fold morphology across cetaceans [13]. In many, but not

all species, these vaginal folds are located in the cranial end of the vagina [14] and typically

decrease in size cranially-to-caudally ([12; 15]; but see [16]). Similar vaginal structures are

present in hippopotamuses (e.g.,Hippopotamus amphibius [17]), which are the closest terres-

trial relatives to cetaceans and also mate in the water. Vaginal folds appear to be unique to ceta-

ceans and their closest relatives, the artiodactyls; no similar structures have been reported in

non-cetacean marine mammals (phocids [18]; Australian sea lion, Neophoca cinerea [19]; Cali-

fornia sea lion, Zalophus californianus [20]; Amazonian manatee, Trichechus inunguis [21]; sea

otter, Enhydra lutris [22]).

Several alternative, but not mutually exclusive hypotheses have been proposed for the func-

tions of cetacean vaginal folds, although none have been empirically tested. Vaginal folds have

most often been suggested to function as adaptations for copulation in the marine environ-

ment [14; 23–27]. Seawater is lethal to common bottlenose dolphin sperm (Tursiops truncatus
[28]), and presumably to the sperm of all cetaceans that mate in marine environments. Thus,

vaginal folds, in addition to the cervix, may function to prevent seawater from contacting the

ejaculate when the penis is inserted or withdrawn [14; 23–27]. Alternatively, vaginal folds

might facilitate gestation and parturition. For example, vaginal folds have been hypothesized

to counteract diving-related pressure changes and prevent the “expulsion of the fetus from the

womb” [29], or to aid in parturition. Vaginal folds might aid in parturition by distending the

reproductive tract [23; 30]. Orbach et al. [11] found that vaginal length and vaginal fold width

were greater in pregnant compared to lactating common bottlenose dolphins (T. truncatus),
although their sample size was too small for a robust comparison. They found negligible varia-

tion in vaginal morphology between sexually mature and immature post-mortem specimens.

Vaginal folds could also play a role in mating. For example, they may be adaptations to

induce sperm competition [10]. Cetacean semen does not coagulate because males lack semi-

nal vesicles and bulbourethral glands [31–32]. Semen coagulates are hypothesized to facilitate

sperm retention and to block the pathway of sperm from rival males [33–34]. Accordingly, the

vaginal folds of cetaceans might facilitate sperm retention and increase fertilization success in

the absence of semen coagulation. Vaginal folds might constitute physical barriers to prevent

the loss of semen [30; 32], or provide passageways for sperm transport along the fine longitudi-

nal bands found on the vaginal folds [11], as observed in the cervices of some terrestrial mam-

mals (goats and bovines [35–36]). Vaginal folds may also physically stimulate the penis during

copulation and promote ejaculation, and possibly propel semen towards the uterine horns by

muscle contractions to facilitate fertilization [30; 32].

Although the extensive variability in cetacean vaginal folds provide a rich and unique

opportunity to explore the mechanisms of evolution of female genitalia, the underlying

assumption of a morphological function has not been explored and is a necessary precursor. It

is possible that vaginal folds are not adapted for specific functions and instead scale propor-

tionally with body size and/or reflect phylogenetic history. The influence of body size on evolu-

tion and adaptations is well recognized across taxa [37–40]. Scaling relationships have been

broadly applied to provide insights into underlying mechanisms of biological diversity [40].

Isometric patterns indicate that traits correlate with body size in contrast to allometric pat-

terns, which indicate differential selection or investment in traits. While cetaceans
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demonstrate extensive morphological, physiological, and behavioral adaptations that enable

them to thrive in the aquatic environment, body size is considered one of the most basic, but

important adaptations [41–42]. The large body sizes of cetaceans have important implications

for their swimming and diving efficiency, thermoregulation, life history attributes, sociality,

and predation pressure [41–42]. This study sets the stage for future functional morphology

analyses by first assessing the relationships of cetacean vaginal forms with body size while con-

trolling for phylogenetic effects. Specifically, we test the hypotheses that vaginal length and

cumulative vaginal fold length scale isometrically with body length, and that vaginal length

predicts cumulative vaginal fold length in cetaceans.

Materials and methods

Data collection

Fifty-nine reproductive tracts (20 species and 6 families; S1 Table) were obtained opportunisti-

cally from cetaceans that stranded and died of natural causes. Entire reproductive tracts (exter-

nal uro-genital slit to ovaries) were excised from fresh (< 24 hours post-mortem) or

moderately decomposed deceased cetaceans and provided by marine mammal stranding net-

works throughout the coastal USA and from New Zealand. The reproductive tracts were fro-

zen immediately and transferred to necropsy facilities located at Texas A&M University at

Galveston or the National Oceanic and Atmospheric Administration’s (NOAA) Southwest

Fisheries Science Center (La Jolla, California). Specimens were collected under National

Marine Fisheries Service (NMFS) salvage permit letter and an institutional Convention on

International Trade in Endangered Species of Wild Fauna and Flora permit (CITES). This

study was exempt from an Institutional Animal Care and Use Committee (IACUC) authoriza-

tion as the specimens were deceased upon acquisition and the salvage materials were autho-

rized from appropriate government agencies. The marine mammal stranding networks

provided data on the date and location of each stranding, sexual maturity state, and total body

length. Total body lengths were straight-line measurements from the distal tip of the rostrum

to the median notch on the trailing edge of the fluke [43]. Ideally, all specimens from any

given species would represent only one age class. Due to the opportunistic nature of specimen

acquisition and because no adult samples were obtained for six of the species included in this

study, the specimens used were both sexually mature and immature females from a range of

stranding locations (S1 Table). Minimal variation in vaginal morphology measurements has

been found between sexual maturity states within at least one species (T. truncatus [11]).

The reproductive tracts were positioned in dorsal recumbency and bisected by a longitudi-

nal midline incision from the clitoris to the external bifurcation of the uterine horns. Two

measurements were collected following Orbach et al. [11]: 1) vaginal length and 2) cumulative

vaginal fold length. The vaginal length was a cranial-to-caudal straight-line measurement from

the base of the ectocervix (portion of the cervix in the vaginal lumen, where it met the vaginal

wall) to the cranial limit of the vulva (Fig 1). The vaginal length was measured with calipers

(+/- 0.02 mm) along the midline of the reproductive tract on the dorsal vaginal wall. The vagi-

nal fold length was a straight-line measurement from the base of the vaginal fold (where it met

the vaginal wall) to its distal tip that projected into the lumen of the vagina (Fig 2). The vaginal

fold length was measured with a ruler positioned on the dorsal side of the vaginal fold. Cumu-

lative vaginal fold lengths were summed for each specimen. A vaginal fold was defined as any

folding of the vaginal wall at least 0.5 mm in length. Any vaginal fold less than 1 mm in length

was rounded to 1 mm and included in the statistical analyses (but excluded from the count

data in S1 Table).
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Analyses

Analyses were performed using the statistical program R and the ape and phytools packages

[44–46]. Vaginal length, cumulative vaginal fold length, and total body length means were

Fig 1. Vaginal length measurement of an adult female short-beaked common dolphin (Delphinus delphis). The

reproductive tract is oriented in dorsal recumbency and splayed open. Vaginal length was measured with calipers along the

midline of the dorsal vaginal wall. The measurement was taken in cranial to caudal orientation from the base of the ectocervix to

the cranial limit of the vulva.

https://doi.org/10.1371/journal.pone.0175037.g001
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calculated for each species and base10 log-transformed to meet assumptions of a normal distri-

bution and homogeneity of variance. The cetacean phylogenetic tree and branch lengths pro-

vided by McGowen et al. [47] were used to control for phylogenetic relatedness of species, and

trimmed to remove species not in the database.

Scaling terminology follows Schmidt-Nielsen [37]. Since isometry refers to the slope of two

variables (x and y), the predicted isometry depends on the dimensionality of these variables.

That is, linear measurements of anatomy and body length scale isometrically with a slope of 1;

Fig 2. Vaginal fold length measurement of an adult female Pacific white-sided dolphin (Lagenorhynchus

obliquidens). The black arrows point to eight vaginal folds in this specimen. Vaginal fold length was measured

with a plastic scale positioned on the dorsal side of the fold. The cumulative measurements of vaginal fold length

were straight lines from the base of the vaginal folds to their respective distal tips that projected into the lumen of

the vagina. The hashed white line is positioned where one vaginal fold was measured.

https://doi.org/10.1371/journal.pone.0175037.g002
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each is a one dimensional measurement, whereas mass (a volume) scales isometrically to

length to the third power. In this study, the predicted isometry for all length measurements to

body length is a slope of 1. Reduced major axis regressions were used to account for error that

could occur in measuring either x or y variable and to overcome scale dependence [48]. Mod-

els of the algebraic form log y = log a + b log x were fitted to the data. Three phylogenetic linear

reduced major axis regressions were implemented using the RMA procedure in the R package

phytools (phyl.RMA(x, y, tree, method = "lambda"); [46]). Mean vaginal lengths and mean

cumulative vaginal fold lengths were regressed separately on mean total body lengths. For the

third phylogenetically controlled regression of mean cumulative vaginal fold lengths on mean

vaginal lengths, non-phylogenetically controlled residual values were first calculated of vaginal

length on body length and of vaginal fold length on body length. To evaluate the fit of the lin-

ear phylogenetic RMA models to the data, R2 values were computed using the formula:

R2 ¼ 1 �
SS Residual
SS Total

;

where SS is the sum of squares. T-tests were used to examine significant deviations of the slope

of the regression line (β1) from the isometric slope of 1 [49–50]. Isometry was inferred when

there was no significant deviation between β1 and the isometric slope, negative allometry was

inferred when there was significant deviation and β1 < 1, while positive allometry was inferred

when there was significant deviation and β1 > 1 [49–50]. The 95% confidence intervals of β1

were also inspected to test for deviations from isometry. Thus a value of P> 0.05 fails to reject

the null hypothesis of isometric scaling, corresponds with a predicted exponent within the

95% confidence intervals, and indicates a linear correlation between the log-transformed vari-

ables. A correlation structure (Pagel’s λ, derived from the Brownian motion model) that is

robust to incomplete phylogenies was implemented to estimate the extent to which trait varia-

tion is related to phylogeny [51–52]. A λ value of 0 indicates phylogenetic independence, while

a λ value of 1 indicates complete phylogenetic correlation [51–52]. We tested if the derived λ
values were significantly better model fits than the null hypothesis (λ = 0) using log-likelihood

ratio tests.

Results

The 59 reproductive tracts examined varied widely in relative size, shape of folds, and number

of folds. The number of vaginal folds ranged from one in common bottlenose dolphins (T.

truncatus), long-beaked common dolphins (Delphinus capensis), and short-beaked common

dolphins (D. delphis; Fig 1) to thirteen in harbor porpoises (Phocoena phocoena; N = 59,

mean ± SD = 4 ± 2.8; S1 Table). The mean vaginal length of specimens was 21.1 cm (N = 59,

SD = 15.3). The mean cumulative vaginal fold length was 51.5 mm (N = 59, SD = 47.5). All

vaginal folds greater than 1 mm projected caudally towards the external vaginal opening.

Directionality of projection could not be determined in vaginal folds less than 1 mm in length.

In almost all specimens, vaginal folds were only present in the cranial half of the vagina. With

the exception of some specimens in the genera Phocoena, Kogia, Orcinus, and Lagenorhynchus,
vaginal folds generally decreased in length from the cranial to caudal direction.

Vaginal length scaled isometrically to body length (R2 = 0.426, t = 1.873, df = 17, P = 0.079;

Table 1; Fig 3A) and a phylogenetic signal was present in the data (λ = 0.684; P = 0.002). In

contrast, cumulative vaginal fold length showed significant positive allometry (R2 = 0.160,

t = 3.596, df = 19, P = 0.002; Table 1; Fig 3B) in addition to less and non-significant phyloge-

netic signal (λ = 0.359; P = 0.22). Vaginal length was not a strong predictor of cumulative vagi-

nal fold length (R2 = 0.093, t = 2.630, df = 19, P = 0.016, λ = 0.523; Table 1; Fig 4), although the
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relationship between the two variables showed some significant phylogenetic signal (λ = 0.523;

P = 0.04).

Discussion

The scaling of reproductive tracts (how genitals change in size relative to changes in body size)

has been studied for males, both within and among several taxonomic groups [49]. The genita-

lia of male mammals tend to show significant positive allometry (e.g., testes mass in Cape

ground squirrels, Xerus inauris [50]; penis length in bats [53]; baculum size in harp seals, Pago-
philus groenlandicus [54]; penis length in in Hottentot golden moles, Amblysomus hottentotus
[55]; baculum size in muskrat, Ondatra zibethicus [56]), although scaling relationships may

vary with the strength of pre- and post-copulatory sexual selection and/or mating systems [57–

60]. However, few studies have investigated the scaling of female mammalian reproductive

tracts. An isometric relationship was found with vaginal length in Hottentot golden moles

[55], while no significant scaling patterns were found between body length and vaginal length

or vaginal mass in Cape ground squirrels [50] or vaginal length in chimpanzees (Pan troglo-
dytes [61]). Significant positive allometry was reported for vaginal length in Cape dune mole-

rats (Bathyergus suillus); however, this pattern was exclusive to the breeding season [49]. Our

finding, that vaginal length scales isometrically (Fig 3A), is congruent with other studies of

female mammals and establishes a pattern of scaling of female reproductive organs of terres-

trial and aquatic mammals by assessing trends across species. We advocate the need to broadly

assess scaling patterns within phylogenies, as we found that variation in vaginal length across

Table 1. Scaling relationships among body length, vaginal length, and cumulative vaginal fold length.

Variable (Log vs Log) R2 β0 β1 Lower 95% CI Upper 95% CI Predicted exponent ƛ P PΔlog(L)ƛ

VL vs. BL 0.43 -2.35 1.40 0.95 1.85 1 0.68 0.08 0.002

VctFL vs. BL 0.16 -5.85 2.17 1.49 2.86 1 0.36 0.002 0.22

VFLresiduals vs. VLresiduals 0.09 -0.05 1.80 1.16 2.44 1 0.52 0.02 0.04

VL = vaginal length; BL = body length; VFL = vaginal fold length; β0 = intercept; β1 = slope; CI = confidence interval; ƛ = phylogenetic signal; Δlog(L)ƛ =

difference in log-likelihood ratios between observed ƛ and ƛ0. R2 calculated from linear phylogenetic reduced major axis regressions.

https://doi.org/10.1371/journal.pone.0175037.t001

Fig 3. Regression of (A) vaginal length on total body length and (B) cumulative vaginal fold length on total body length. The solid black lines

indicate the lines of best-fit from a phylogenetic reduced major axis regression, while the hashed red lines indicate the isometric slopes. N = 20 species.

https://doi.org/10.1371/journal.pone.0175037.g003
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cetaceans is strongly connected to taxonomic relatedness (especially among species in the

genus Delphinus). Since vaginal protrusions are uncommon in most mammals (with the

exception of some artiodactyls), comparable studies of vaginal morphology scaling patterns in

relation to vaginal lengths or body lengths are scant. Future studies that quantify variation in

the vaginal morphology of artiodactyls and compare patterns with cetaceans will be particu-

larly valuable in elucidating the function(s) of vaginal folds.

The extensive morphological variation observed in vaginal structures across cetaceans has

not been documented in other mammalian orders. Cetacean vaginal folds not only varied in

size, but also in number, positioning, and shape across species. Linear scaling with body size

can be used as an explanatory factor for the observed diversity in vaginal length (Fig 3A). The

significantly positive allometry of cumulative vaginal fold length to body length (Fig 3B), in

addition to the low variance explained by the regression (16%) and non-significant phyloge-

netic signal, suggest there may be additional explanatory factors driving the diversity of vaginal

fold lengths besides scaling patterns and phylogeny. Species with longer vaginal lengths tended

to have disproportionately longer cumulative vaginal fold lengths (Fig 4). Since vaginal length

and cumulative vaginal fold length varied independently of each other, and only vaginal length

showed some significant phylogenetic signal, it appears that selective forces act differently on

vaginal length and cumulative vaginal fold length in cetaceans. Accordingly, we suggest that

the morphological diversity of vaginal folds reflect adaptations for specific functions. Two

non-mutually exclusive functional hypotheses are discussed but not explicitly tested since this

is outside the scope of this study and requires more experimental data: 1) the prevention of the

incursion of seawater into the reproductive tract [14; 23–27] and 2) post-copulatory sexual

selection [10–11].

Fig 4. Regression of cumulative vaginal fold length on vaginal length. The non-phylogenetically controlled residuals of vaginal length

on total body length and the non-phylogenetically controlled residuals of cumulative vaginal fold length on total body length were used. The

solid black line indicates the line of best-fit from a phylogenetic reduced major axis regression, while the hashed red line indicates the

isometric slope. N = 20 species.

https://doi.org/10.1371/journal.pone.0175037.g004
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The evolution of vaginal folds may reflect adaptive mechanisms developed to overcome

challenges associated with living and mating in the marine environment. Vaginal length and

cumulative vaginal fold length could reflect different mechanisms for the same function—to

prevent the flow of seawater. Recognition that multiple morphological characteristics can

serve one function (many-to-one mapping of form to function) is common among a wide

range of vertebrates [62]. Since seawater is lethal to cetacean sperm [28], long vaginas may hin-

der the flow of water into the vaginal cavity simply due to the physical distances. Specifically,

long vaginas may thereby hamper the incursion of water into the cranial part of the vagina

(where semen is deposited) and the upper reproductive tract (where fertilization occurs and

the fetus develops in the uterine horn). Vaginal folds can form deep crypts, which may func-

tion as physical barriers to seawater flow and might be particularly important in species with

short vaginas.

However, there are several lines of evidence that do not support the functional hypothesis

of preventing the flow of seawater into the vagina and instead support an alternative hypothe-

sis related to post-copulatory sexual selection. For example, species with short vaginas often

possessed short vaginal fold lengths (Fig 4). If vaginal folds function as physical barriers, then

an inverse relationship between these two variables would be expected. Similarly, species with

few vaginal folds had significantly shorter relative vaginal fold lengths compared to species

with many vaginal folds (S1 Fig). Vaginal folds were usually concentrated at the cranial end of

the vagina rather than distributed evenly through its length, although seawater could also be

present in the caudal vagina. To prevent seawater from entering the vagina, it would be

expected that vaginal folds would be greater in length at the caudal vagina (point of contact

with seawater). Instead, vaginal folds generally decreased in length from the cranial to caudal

direction. As it is commonly thought that all water (including freshwater) is lethal to mamma-

lian sperm [63–64], the presence of vaginal folds in a river dolphin, which inhabits only fresh-

water environments, does not preclude the barrier to water functional hypothesis (baiji,

Lipotes vexillifer [26]). However, if vaginal folds serve as physical barriers to water flow, it is

unclear why other, non-cetacean marine mammals, which mate only in the water, also lack

vaginal folds (e.g., phocids [18], Amazonian manatees [21], sea otters [22]). Collectively, these

observations suggest that other factors are needed to explain the variability in the presence and

development of vaginal folds in cetaceans.

Cetaceans may have other barriers which occlude seawater from entering their reproductive

tracts and affecting osmoregulation. The lack of vaginal fold-like structures in non-cetacean

marine mammals may indicate that the tight vaginal seal of the labia minora may be sufficient

to prevent seawater and marine debris from entering the reproductive tract, including during

non-mating contexts. Any seawater that overcomes the physical barrier of the labia minora
may encounter additional challenges, which prevent entry into the cranial vagina or upper

reproductive tract. For example, the hymeneal folds of pinnipeds and manatees are located

more caudally in the vagina compared to cetacean vaginal folds and could potentially form a

physical barrier [65]. The cervix functions as a critical barrier to the upper reproductive tract.

The anti-microbial defenses and immune responses of the vagina and cervix, in addition to

cervical mucus, can prevent movement of foreign bodies into the upper reproductive tract

[66]. The thick cervical mucus and narrow aperture and passageway of the endocervix

observed in cetaceans appear to largely occlude the opening of the uterus [11; 23]. Future stud-

ies that investigate the relationship between vaginal length, vaginal fold complexity, and cervi-

cal conformation are warranted.

Vaginal modifications could also be shaped by post-copulatory sexual selection and the

coevolution of male and female reproductive anatomy [5; 67–68]. Vaginal folds might be con-

centrated in the cranial half of the vagina, because ejaculation occurs proximate to the cervix
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and deep to the vaginal orifice (T. Robeck, pers. comm.). Since the distal tips of vaginal folds

projected caudally within the lumen of a vagina and generally decreased in size from cranial to

caudal direction, like a funnel, they may restrict sperm from entering the cranial vagina or

upper reproductive tract rather than retention. Future studies that use in vivo vaginal endos-

copy of recently mated cetaceans or physical models might be able to illuminate whether vagi-

nal folds form physical barriers to seawater and sperm movement; this can be accomplished by

examining and distinguishing where seawater and sperm pool within the vagina or vaginal

model.

Assessment of the relationship between vaginal complexity and testes size or penile mor-

phology (testes size and penile length are correlated in cetaceans; [69–70]) could provide evi-

dence of a role of vaginal folds in sexual selection. For example, oviduct length was positively

correlated with testes weight and with sperm characteristics across 33 genera of mammals

[71]. Penile morphological diversity has not been well documented among cetaceans. Future

studies of how penile morphology relates to vaginal fold shape, length, or positioning, and

how deep the penis penetrates the vagina and possibly the cervix during copulation are needed

to further explore the sexual selection functional hypothesis of vaginal folds.

Only three species- pygmy sperm whales (Kogia breviceps), dwarf sperm whales (Kogia
sima), and harbor porpoises (Phocoena phocoena)- were consistently located above the body

size regression line for both vaginal length and cumulative vaginal fold length (Fig 3). These

three species all invest heavily in sperm competition, as supported by their large relative testes

sizes [72]. Life history and socio-biological factors could explain why these three species were

consistently located above the regression lines, unlike other species with large relative testes

sizes. For example, pygmy sperm whales, dwarf sperm whales, and harbor porpoises have been

identified in the “fast end” of the life history continuum for cetaceans [73–74]. Reproductive

tract characteristics that favor the viability of sperm in potentially lethal aquatic environments

(e.g., physical barriers to water flow) are particularly beneficial for species with frequent

reproduction.

The data demonstrate that vaginal length was not a significant predictor of cumulative vagi-

nal fold length. This may be because the two characters function differently to restrict seawater

and/or semen to the caudal vaginal region (i.e., physical distance and physical barrier). Cumu-

lative vaginal fold length was selected as a variable because it was a straightforward and quanti-

tative measure of the extent of obstruction of the vaginal lumen. However, other features of

vaginal folds, such as thickness, shape, or number—as well as other features of the entire repro-

ductive tract, such as the lengths of various chambers—could be informative in determining

function. Although data were not obtained for all 90 extant cetacean species, the data are repre-

sentative of 11 genera across the cetacean phylogeny. The data provide a robust indication of

taxon-wide patterns that can be further expanded to advance our understanding of the evolu-

tion of genital morphology.

Conclusions

Although vaginal folds have been reported in several cetacean species [14], quantitative mea-

surements of vaginal morphology have not been collected for most species, nor measured

using consistent landmarks. This lack of information has hindered the ability to systematically

assess the function(s) of vaginal folds in cetaceans. Although vaginal length scaled isometrically

with body length, cumulative vaginal fold length scaled with significant positive allometry.

Since most variance in the regressions was not explained by body size and the factors were not

predictors of each other, vaginal fold diversity may be maintained by additional natural and/or

sexual selection pressures. This study lays the foundation for tests of functionality that will
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determine if vaginal folds are an example of specialized adaptations to aquatic living and/or

relate to sexual selection.

Supporting information

S1 Fig. Regression of cumulative vaginal fold length on number of vaginal folds. The non-

phylogenetically controlled residuals of cumulative vaginal fold length on total body length

were used. The solid black line indicates the line of best-fit from a phylogenetic reduced major

axis regression (R2 = 0.113, t = 10.997, df = 19, P< 0.01).

(TIF)

S1 Table. Counts and measurements of the specimens. Measurements were not scaled by

body length. The U.S. state (or country for New Zealand) where each specimen stranded is

listed. The median is listed in parentheses when it varies from the mean.

(DOCX)
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